
1 D-RI92 725 BISIMULATION CAN'T BE TRRCED(U) MASSACHUSETTS INST OF 1/1
TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE B BLOOM ET RL.
NOY 8? MIT/LCS/TM 345 N9BS±4-93-K-6125

UNCLASSIFIED F/G 12/5 N

IE00000E100E1I

lIII2 1111 1 IF11 IVwl
= - IIII%

LABOATOR FORMASSACHUSETTSLABOATOR FORINSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

N* at~ F LE CLTPY
MIT/LCSfTM-345

BISIMULATION CAN'T
BE TRACED:

PRELIMINARY REPORT

Bard Bloom

Sorin Istrail

Albert R. Meyer

DTICSEi-FOTE9
November 1987

88 16 69
545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 021397---ISThIVTION STATUMN~pTvK to ulc ees;IA

Dteubuir, ~~i

Unclassified
SECURITY CLASSIFICATION OF THISPAGE

REPORT DOCUMENTATION PAGE
Ia. REPO0RTSEICURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRI 'BUTION / AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION i DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-345 DARPA/DOD N00014-83-K--0125

6a. NAME OF PERFORMING ORGANIZATION 16b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science j ('it applicable) Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, Stat., and ZIP Code) 7b. ADDRESS (City, State, and ZIP Co*e)

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING ISPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
DARPA! DOD

Bk. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK WORK UNIT

1400 Wilson Elvd. ELEMENT NO. INO. INO ACCSSIN NO.
Arlington, VA 22217 I

11. TITLE (include Security Classification)

Bisimulation Can't be Traced: Preliminary Report

12. PERSONAL AUTHOR(S)
Bloom, Bard, Istrail, Sorin, and Meyer, Albert R.

13a. TYPE OF REPORT 113b, TIME COVERED I14. DATE OF REPORT (Yea, Month, Day) I PA5COUNT
Technical IFROM To 1987 November I ; '

16. SUPPLEMENTARY N)TATION

11C'AICODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
ELD GROU SUBGRO 1- *Languages, Semantics, Concurrency, Parallelism, 9

C&R-X19.44 bisimulation, observational equivalence,
frnrp P iiulm 9i-P a

19 \~STACT(Continu.. on reverse if necessary and idoArifv by block number)

~'Bsinmul tion is the primitive ttion of equivalence between concurrent processes in
Milner's Calculus of Communicating Systeps (CCS); there is a nontrivial game-like protocol
for distingo ..hing nonbisimular processes.. In contrast, process distinguishability in
Hoare's theo -y of Communicating Sequential Processes (CSP) is determined soley on the
basis of traces of visible actions. We examine-;(hat additional operations are needed to
explain bisiriulation similarly-specifically in the' case of finitely branching processes
without silent moves. We formulate a general notion 'of Structured Operational Semantics
for processe ; with Guarded recursion (CSOS), and demonstr&'u that bisimulation does not
agree with t -ace congruence with respect to any set of GSO S-d~lf4nble contexts. In
justifying tlie generality and significance of GSOS' s, we work out of the basic proof
theoretic fakcts which justify the SOS discipline. $cn-t L,, 4

20 DISTRIBUTION IAVP;LABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
EM UNCLASSIFEDIUNLIMiTED 03 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPON'IBLE INDIVIDUAL 2 2b TEE= N (include Are& oe 22c. OFFICE SYMBOL

Judv Little (617) 253-5894 Coe
DD FORM 1473, 84 v A R 83 APR edition may be used untI exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete
*UKa "Anq~ftm1111 U.@-o4

Unclassified

Bisimulation Can't Be Traced:
Preliminary Report I

Bard Bloom 2 Sorin Istrail Albert R. Meyer3

MIT Lab. for Computer Sci. Wesleyan Univ. MIT Lab. for Computer Sci.

Abstract. Bisimulation is the primitive notion of equivalence between con-
current processes in Milner's Calculus of Communicating Systems (CCS); there
is a nontrivial game-like protocol for distinguishing nonbisimular processes. In
contrast, process distinguishability in Hoare's theory of Communicating Se-
quential Processes (CSP) is determined solely on the basis of traces of visible
actions. We examine what additional operations are needed to explain bisimu-
lation similarly-specifically in the case of finitely branching processes without
silent moves. We formulate a general notion of Structured Operational Se-
mantics for processes with Guarded recursion (GSOS), and demonstrate that
bisimulation does not agree with trace congruence with respect to any set
of GSOS-definable contexts. In justifying the generality and significance of
GSOS's, we work out some of the basic proof theoretic facts which justify the
SOS discipline.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Def-
initions and Theory-syntaz, semantics; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs-program equivalence; F.3.3 [Log-
ics and Meanings of Programs]: Studies of Program Constructs.

General Terms: Languages, Semantics, Concurrency, Parallelism.

Additional Key Words and Phrases: CCS, SCCS, CSP, MIEJE, bisimulation, observational
equivalence, trace equivalence.

1This Technical Memorandum is a slightly revised version of a paper that will appear under the same title
in the Proceedings of the 15"' Annual ACM Symposium on Principles of Programming Languages, January,
1988.

2Supported by an NSF Fellowship; also NSF Grant No. 8511190-DCR and ONR grant No. N00014-83-
K-0125.

3Supported by NSF Grand No. 8511190-DCR and by ONR grant No. N00014-83-K-0125.

1

BKM% %

1 Introduction

Milner's CCS [18], [19] and Hoare's CSP [16], [17] share the premise that the meaning of
a process is fully determined by a synchronization tree, namely, a rooted, unordered tree
whose edges are labeled with symbols denoting basic actionj or events. These trees are
typically specified by a Structured Operational Semantics (SOS) in the style of [231 or by
some other effective description, and so are in fact recursively enumerable trees. Both the-
ories further agree that synchronization trees are an overspecification of process behavior.
and certain distinct trees must be regarded as equivalent processes. The notable difference
in the theories is that bisimulation yields finer distinctions among synchronization trees.

In CSP, process distinctions can be understood as based on observing traces, namely,
maximal sequences of visible actions performed by a process. Two trees are trace equivalent
iff they have the same set of traces. Given any set of operations on trees, trace congruence
is defined to be the coarsest congruence with respect to the operations which refines trace
equivaience. Thus, two CSP processes are distinguished iff each can be used in a single CSP
context which yields a different set of traces depending on which of the two processes is
used. This explanation of when two synchronization trees are to be identified is thoroughly
elaborated in Hennessy and DeNicola's test equivalence system [10]. On the other hand,
two CCS processes are distinguished according to an "interactive" game-like protocol called
bisimulation. Indistinguishable CCS processes are said to be bisimular.

• (b+) b+ *C

_4
Figure 1: Trace equivalent but not trace congruent.

A standard example is the pair of trees (Figure 1) a(b + c) and (ab + ac) which are trace
equivalent, but not CSP trace congruent, viz., in CSP (and also CCS) they are distinct
processes. Similarly, the trees of (Figure 2)

(abc + abd) and a(bc + bd) (1)

are CSP trace congruent but not bisimular, viz., equal in CSP but distinct in CCS [24]. [6].
The trace-based approach is developed in [7], [17], [21], [101. Bisimulation-based systems
include [191, [20], [2], [4], [5], [3].

2

.A-' x6~ ~ ----

a, a

b b b b

d C d

abc+abd aj~bc +bd)

Figure 2: CSP trace congruent but not bisimular.

The idea of an "silent" (aka "hidden" or "r-") action plays an important role in both CSP
and CCS theories, but creates significant technical problems. In this paper we assume for
simplicity that there is no silent action. We expect that our conclusions will generally
apply when silent actions can occur, but this remains to be verified.

In the absence of silent action, bisimulation is known to be a congruence with respect to
all the operations of CSP/CCS, and Milner has argued extensively that in this case bisim-
ulation yields the finest appropriate notion of the behavior of concurrent processes based
on synchronization trees. Although there is some ground for refining synchronization trees
further (cf. [81), we shall accept the thesis that bisimular trees are not to be distinguished.
Thus, we admit below only operations with respect to which bisimulation remains a con-
gruence. Since bisimular trees are easily seen to be trace equivalent, it follows in this setting
that bisimulation refines any trace congruence. Our results focus on the converse question
of whether further identifications should be made, i.e., whether nonbisimular processes are
truly distinguishable in their observable behavior.

We noted that a pair of nonbisimular trees T, T2 can be distinguished by an "interactive"
protocol. The protocol itself can be thought of a new process P[T, T21. One might suppose
that in a general concurrent programming language, it would be possible to define the new
process too, and that success or failure of P running on a pair TI, T2 would be easily visible
to an observer who could observe traces.

However, CSP and CCS operations are very similar, and the example of Figure 2 above
shows that bisimulation is a strictly finer equivalence than trace congruence with respect
to CSP/CCS operations. It follows that the contexts P distinguishing nonbisimular pro-
cesses by their traces are not definable using the standard CSP/CCS operations; if they '
were, nonbisimularity could be reduced to trace distinguishability. Namely, any pair of
nonbisimular trees TI, T2 would also be trace distinguishable by plugging them in for X 0
in P[X, T,] and observing the "success" trace when T, is plugged in, but not when T2 is 0

plugged in.

Thus, we maintain that implicit in concurrent process theory based on bisimulation is an-

Availability Codes

A -ll and/or

b 4 4 b b

4 C

.s(c+bd) a~bc+bd) + abc

Figure 3: GSOS congruent but not bisimular.

other "interactive" kind of metaprocess, which the formalisms of CSP/CCS are inadequate
to define! Our question is

What further operations on CCS/CSP terms are needed so that protocols
reducing nonbijimularity to trace distinguishability become definable?

In the remainder of the paper, we argue that bisimulation cannot be reduced to a trace
congruence with respect to any reasonably structured system of process constructing oper-

ations. The implications of this conclusion are discussed in the final Section 7.

In particular, we formulate in Section 3 a general notion of a system of processes given
by structured rules for transitions among terms with guarded recursion-a GSOS system.
We also indicate why the focus on guarded recursion is both necessary and appropriate.

All previously formulated systems of bisimulation-respecting operations are definable by

GSOS's. Even rules with negative antecedents are allowed in GSOS's. On the other hand.
we indicate in Section 4 that any of the obvious further relaxations of the conditions

defining GSOS's can result in systems which are ill-defined or fail to respect bisimulation.

Thus, we believe that GSOS definability provides a generous and mathematically invariant
constraint on what a reasonably structured system of processes might be.

Definition 1 Two processes are GSOS trace congruent iff they yield the same traces in

all GSOS definable contezts.

Our main result is that bisimulation-even restricted to finite trees-is always a strict
refinement of GSOS trace congruence. Specifically, we develop in Section 5 a modal logical

characterization of GSOS trace congruence similar to the characterization of bisimulation
given by Hennessy and Milner [15] and use it to prove:

4

! iP l .

a ~ aa

ab+aa aa+a(b+a)+ab

Figure 4: CSP trace congruent but not GSOS trace congruent.

Theorem 1 The nonbisimular trees a(bc + bd) and a(bc + bd) + abc (Figure 3) are GSOS
trace congruent.

We remark that GSOS congruence is a strict refinement of CSP congruence:

Theorem 2 The processes aa + ab and aa + ab + a(a + b) (see Figure 4) are CSP trace
congruent [10, aziom (D5), p. 99] but not GSOS trace congruent.

Abramsky [1] independently raised the question of how to test distinguishability of non-
bisimular processes and formalized the operational behavior of a set of protocols which do
capture bisimulation. In Section 6 we offer a similar system for the task, slightly improved
in certain respects. Our thesis that no reasonably structured system can capture bisimu-
lation implies that both these systems must lack some important structured features. We
also examine the nature of these flaws in detail in Section 6.

2 Trees and Modal Formulas

The simplest tree consists of just a root without edges. It is the "successfully stopped"
process, 0. If a is an action and P is a tree, then aP is the tree with a fresh root and a
single edge, labeled with a, from its root to the root of P (Figure 5). The intention is that
aP corresponds to the process which performs action a and then behaves like P. Thus aO is
the tree with one edge labeled a corresponding to the process whose only behavior is to do
action a and stop. We ambiguously write just "a" for aO. If P and Q are synchronization
trees, let P + Q be the tree obtained by identifying the roots of (disjoint copies of) P and
Q (Figure 6). The intention is that P + Q models the nondeterministic process which can
behave like either P or Q.

-

0

aP

Figure 5: Tree for aP.

P Q

P+Q

Figure 6: Tree for P + Q.

This definition of + and 0 explains why both CCS (branching) and CSP (linear) theories
accept the familiar axiom

p+O =p. (2)

Since trees are unordered, both theories also include the equally familiar axioms

(p+q)+r=p+(q+r), p+q=q+p. (3)

Now we note that the tree a + a corresponds intuitively to a process which has two different
ways of doing action a and stopping. But the intuition that an action is a minimal de-
tectable event suggests that the theory should disallow detection of the way a basic event
occurred-all that can be detected is the occurrence of the event itself. Thus in both CSP
and CCS, a = a + a, and more generally,

p=p+p, (4)

is also accepted as a valid axiom.

The "interactive" protocol defining bisimulation appears in many of the references and
we omit it. We remark that two finite trees are bisimular if" they are provably equal
as a consequence of equations (2)-(4). For our purposes, the most useful formulation of
bisimulation is in terms of Hennessy-Milner-logic (HML) formulas [15]:

6

Definition 2 An HML formula is given by the following grammar:

V : t I ff (a)w I [a]po I ,oVw I p~

For any synchronization tree T, the satisfaction relation, T p, is defined as usual for
modal logic and Kripke models (cf. [11], [25], [12], [13], or [141).

A fundamental result of [15] is that two finitely branching synchronization trees are bisim-
ular iff they satisfy exactly the same HML formulas.

In fact, both Abramsky's and our operational rules in Section 6 for systems where bisim-
ulation coincides with trace congruence are essentially systems for calculating whether a
computably finitely branching synchronization tree satisfies an HML formula.

3 Guarded Terms

Synchronization trees defined in CCS using unguarded recursion may be infinitely branch-
ing, corresponding to what are called "unboundedly nondeterministic" processes. Bisim-
ulation between such CCS-definable trees cannot-on purely recursion-theoretic grounds
based on degree of undecidability-match trace congruence with respect to any set of ef-
fective operations on trees. (Actually, this is an interesting story to work out in detail, but
we save that for another paper.)

The high degree of undecidability of bisimulation arises from unbounded nondeterminism.
Unbounded nondeterminism is a source of other theoretical difficulties as well, notably that
the desired operations on processes are not continuous with respect to any useful known
topology. For example, there are simple examples of synchronization trees whose finite
subtrees from the root are identical, but which are nevertheless not bisimular. For this
reason, restrictions are generally imposed on recursive definitions of processes. In CCS,
"guarded" recursion is singled out as attractive, and in CSP and the test-equivalence
system of [10], unguarded recursions are treated as though they diverged (with an infinite
sequence of silent moves). The essence of these restrictions is to ensure that definable trees
behave like computably finitely branching trees, i.e., there is an effective procedure which,
given (a term denoting) a tree node M, computes the finite set {N : M -a N}.

For finitely branching trees, trace congruence (including infinite traces) coincides with
finite-trace congruence, and as we noted two such trees are bisimular iff they satisfy the
same set of HML formulas. Since it is decidable whether a computably finitely branching
tree satisfies an HML formula, it follows that bisimulation between such trees is at most
lI ° . as is the degree of trace congruence with respect to effective operations on such trees.
Thus, on recursion-theoretic grounds, finite-trace congruence with respect to some suitable

7

set of operations could equal bisimulation. As noted, this is indeed possible as we show in
Section 6. Nevertheless, no reasonably structured operational system can do the job. as
we now explain precisely.

We consider theories of synchronization trees described in the standard way by algebraic
terms with fixed point operations.

Definition 3 Process terms, M, are given by the grammar:

M ::= X IaM I op(M,...,M) IfixX.M (5)

where X ranges over synchronization tree variables, a ranges over action symbols, and
"op" ranges over operation symbols (of varying arity). M is guarded iff, for each subterm
fix X.N, each occurrence of X in N is within the scope of an a-prefixing operator.

Note that all terms not containing fixed points are guarded. The unary operator a(-) is
distinguished from the other operator symbols since it plays a special role in the definition
of guarded terms. It will be required to have the same meaning in all GSOS's, namely
a-prefixing.

Definition 4 A Structured Transition Rule (STR) is a rule of the form:

{X i !a Y1
,, 1 j m i }, {X , , I i }Xi2"l'Jl<-J-- li=1 j* :l5jni L=;

op(X,...X5) -1; m

where the variables are all distinct, I > 0 is the arity of op; mi, ni _> 0, and M is a guarded
term whose free variables are contained in the set of Xi's and Y,'s. (M need not contain
all these variables.) The symbol op is called the principal operator of the rule.

The antecedents of the form X -4 Y are called positive, and are satisfied when X and
Y are instantiated with processes such that Y is an a-child of X's synchronization tree
(cf.Definition 7 below). The others, of the form X .0, are called negative; they are satisfied
when X is instantiated by a process with no a-children at its root. The rule is positive if
all the antecedents are positive.

Note that every Xi occurring in the antecedent of an STR must occur as an argument of
the principal operator in the consequent, but not every argument of the principal operator
need occur in the antecedent.

8

Definition 5 Fixed point rules are of the form:

M[X := fix X.M] -Y (6)
fixX.M -! Y

where M[X := N] denotes substitution of N for X in M, with renaming to avoid capture
of free variables in N. Guarded fixed point rules are fixed point rules in which the term
fix X.M is guarded.

Many of our results are unaffected if an arbitrary family of what we call 6-rules of the form

Ci "-2C j

are allowed, involving (a possibly uncountable number) of constants ci.

All GSOS's have all guarded fixed point rules (6), and so these are not mentioned explicitly
in the next definition.

Definition 6 A GSOS rule system is given by a finite alphabet of actions a, a finite
number of STR's, and an arbitrary set of b-rules. There must, for each a, be a unique rule
whose consequent is of the form aX -+ M, and this rule must be

aX - X (7)

Definition 7 An instantiation, -, is a map from variables to guarded terms. If P is
a guarded term, then P(e] denotes the simultaneous substitution of c(X) for each free
occurrence of X in P.

De.inition 8 A system of binary relations -+ on guarded terms, indexed by actions a,
agrees with a set of rules iff:

" Whenever an instantiation by e of the antecedents of a rule is true of the relation,
then the instantiation of the consequent by c is true as well.

* Whenever P -A Q is true, then there is a rule r and an instantiation e such that
P -a Q is the instantiation of the consequent of r by c, and the instantiations of the
antecedents of r by e are true.

Theorem 3 For any GSOS system, there is a unique system of arrow relations indexed
by actionv which agrees with the STR' of the GSOS plus the guarded fixed point rules (6).

9

LJ II '111112 Or

Proof: A routine structural induction and slightly less routine fixed point induction on
guarded terms. Details omitted. 0

For example, Milner's SCCS operators [19] are defined by STR's:

X - Y X'-a*y

X+X'-2Y ' X+X'-Y

X rA Y rA(a E A C Act)

X + Y. X' 4 Y'
XxX' YxY'

The simple interleaving product of CCS is given by:

X.-! Y X' aY

XIX' 2. YIX'' XIX,-+ XIy

Sequential composition of processes, ";", may (and must) be defined using negative rules:

X-ay Xi-b+y', {Xa IaEAct}
X; X' -4 Y; X' X; X',A Y,

Thus. the operational rules assigning synchronization trees to CCS/CSP/ACP/MIEJE
terms easily fit the GSOS framework.

In fact, STR's go beyond the kind of SOS rules needed for CCS in two respects-use of
negation and use of copying. Namely, there can be more than one antecedent about the
behavior of the same subprocess in an STR. For example,

X -a+Y, X_4Y' A

a-if-b(X) -% a-if-b(Y)

involves two "copies" of process X in the antecedent. Substituting for X in a-if-b(X + b)
trace distinguishes the two trees in Theorem 2 (Figure 4). This example also shows that
GSOS congruence strictly refines Phillips refusal testing congruence [22] which he was led
to develop by considerations similar to ours and Abramsky's. Note that neither recursion
nor negative rules were needed in this example. De Simone [9] shows that without negation
or copying, the only GSOS definable operators are already CCS definable.

10

4 Why GSOS?

Keeping to the GSOS discipline provides structural induction as a proof technique, as
indicated for Theorem 3. In addition, GSOS's guarantee:

Theorem 4 If a set of 6 -rules defines a set of computably finitely branching trees, then
the trees definable in any GSOS system with these 6-rules are also computably finitely
branching.

Theorem 5 Bisimulation is a congruence with respect to all GSOS contexts.

There are many technical restrictions in our definition of a GSOS rule, and it is natu-
ral to ask if they can be relaxed. We indicate how various relaxations may break the
key properties of OSOS systems. Note that some systems with non-GSOS rules enjoy
the good properties of GSOS systems; however, this is not immediate from the syntactic
specifications of these systems. We maintain that GSOS's represent essentially the most
general family of systems satisfying Theorems 3-5. The two properties which non-GSOS
rules often violate are:

1. The existence of a unique system of arrow relations, --+, agreeing with the rules.

2. The guarantee that bisimulation is a congruence.

The disjointness of the variables on the right and left sides of arrows in the antecedent is
required to guarantee the existence of an arrow relation. Consider a system including the
three operators a, /3, and -f defined as follows:

X a yJY,- a y2

a(X) 0 o

O(X) a .

It is not hard to show that there is no arrow relation which agrees with these rules. In
particular, a(-y) can move iff it cannot move.

11'

..p -~

Other ways to use variables for pattern-matching allow us to distinguish between bisimular
processes. For example, the following rule has two uses of Y.

XI-a+Y, X 2 -aY

6(X, X 2) -- 0

The context 6(aO, a.) distinguishes between the bisimular stopped processes 0 and 0 + 0.

Other forms of pattern-matching, predictably, fail to guarantee preservation of bisimula-
tion. For instance, if we allow the left-hand side of a consequent to look at more than the
first operator of a process, we can have the rule

¢(o) -2+

which again gives a context ((.) which distinguishes between 0 and 0 + 0.

5 Limited Modal Formulas

Definition 9 Limited modal formulas are given by the following grammar:

v::=tt fff I[ajif I (a) I Ap IVW.

Two trees are defined to be limited modal equivalent iff they satisfy the same set of limited
modal formulas.

That is, a limited modal formula is an HML formula with a very restricted use of the [a]
(necessity) modality.

Theorem 6 For finitely branching synchronization trees, limited modal equivalence coin-
cides with GSOS trace congruence.

Proof: A nontrivial structural and fixed-point induction, which is omitted from the pre-
liminary report. 0

6 Global Testing Semantics of Bisimulation

Abramsky, "aim[ing] to place the cards on the table as a basis for ... discussion," [1. p.
15], develops a clear system of operational rules whose trace congruence coincides with
bisimulation for finitely branching trees without silent actions. By Theorem 1, this system
cannot conform to the GSOS discipline. Examining it in detail, we find:

12

' ,,. ~. *.* -J. -v~UM
Vc

1. There are two sorts of processes, those given CCS-like treatment as synchronization
trees and other "test" processes which have different operations defined on them.
For example, test processes are not closed under recursive definitions.

2. The inductive rules defining the operational semantics of test processes assign tran-
sitions to terms which must pattern-match on more than their outermost operator.
This violates the GSOS format and makes it unclear whether the operations respect
bisimulation.

3. Indeed, bisimtlation is not a congruence on test processes, nor are bisimular test
processes trace congruent.

4. The inductive rules defining the operational semantics of test processes involve neg-
ative antecedents. This makes it unclear whether the transition relation is even
well-defined, given the presence of non-GSOS rules in the system.

5. Finally, to define the operational behavior of tests, Abramsky introduces rule-schemes
which he describes as involving global testing. Namely, if T is a tree, let 6.(T) -
{TIT -A Ti}. Then rule schemes of the following form appear:

6 (T) = ,- .. , T(8)
3(T) 2 V!, 3(T,)

Note that the number of antecedents implicitly appearing in such global-testing rules
is unbounded.

Items 1, 2, and 3 can be repaired in an ad hoc way. A guarded (pun intended) use
of negative antecedents can, as already demonstrated in Section 4, be admitted in well-
structured systems. We now exhibit our own variation of Abramsky's system as a modest
improvement which meets concerns 1-4. The global-testing rules remain, however, as an
objectionable feature.

Global testing is objectionable because, in general, bisimulation may not be a congruence
with respect to operations definable with global testing-although it is a congruence for
our particular system. Indeed it is undecidable to determine whether bisimulation is a
congruence given a finite set of GSOS-plus-global-testing rules. Even when bisimulation is
a congruence, merely adding positive STRs may destroy the congruence.

Let S be any GSOS system. We will extend S to a new system S, involving global-testing as
well as GSOS rules, in which trace congruence coincides with bisimulation. The extension
is conservative, namely, if P is a process in S, then the behavior of P in S is precisely that
of P in S.

13

true false
and(.,.) or(.,.)
pos.(. nec,(.)
Sat(.,-)

Figure 7: Operators for Global-Testing System

The actions of S are the actions of S, plus {e, d, t,f, bl, b2,... , b.} where n is a suitably
large number chosen below. The operations of , are those of S, together with the operators
shown in Figure 7

The first six operators are the formula-represeenting operators; there is a posa(P) and
nec.(P) for each action a of S.
If F codes a HML formula p, then Sat(P, F) will compute whether or not P satisfies 0.4

Sat(P, F) takes a t-step if F codes it, and an f-step if F codes if; otherwise it makes an
e-step, doing one step of the computation trying to see if P satisfies F, and produces an e.

Finally, the binary infix operators • A . and -V. are are the computational boolean op-
erators, which evaluate the conjunctions and disjunctions arising in the evaluation of
Sat(P, F).

The system codes HML formulas into bisimulation trees in the following way. Let the
bit pattern of F, bitpat(F), be the vector (vl,... , vI), where vi = 0 if F b and vi = 1
otherwise. Choose n large enough so that each connective of HML over 9 can be coded
as a distinct bit pattern; let code(a) be the bit vector coding the connective 0'. (The
connectives are t, if, A, V, and (a) and [a] for each action a of S. Note that the system
is slightly self-referential: there are (b,) and [b,] modalities, coded by the bit patterns of
the actions b, themselves. It is clearly possible to choose n so large that all the necessary
modalities may be coded as bit patterns.) To extract a HML formula W from a process F.
we let the bit pattern of F give the leading connective of p; we write F codes a (where a is
a connective) for bitpat(F) = code(a). Note that F codes a may be expressed as a vector

of F b+ and F i. conditions, and is meaningful in the antecedent of a GSOS rule.

The arguments, if any, of the main connective of (p will be represented by the children of
F under d. For example, the process coding Wo1AWo2 is the following. The root can take

4F is a metavariable ranging over processes which we intend to be formulas. This is mnemonic only; F
may be instantiated by any process. Indeed, this fact forces us to include many of the non-obvious features
of the system.

14

bi-steps in the bit pattern for A. It also has two d-descendants F and F2, which represent
v, and -2.

There is an obvious translation W -* of HML formulas into processes. For example,

(IAV2)" = and(p;,W)

(aW*= pos0 ((p*)

The satisfaction operator Sat(P, F) will attempt to interpret F as a formula of HML, as
described above. Sat(P, F) will produce actions e until it decides whether or not P satisfies
the formula coded by F; it then produces an action, t or f as appropriate. If F does not
code a formula, Sat(P, F) may die without producing a t or f answer, or it may run forever.
As it computes, it will make use of the computational Boolean operators A and V. For
example, we will have the behavior:

Sat(P, (W1 AW2)*) - Sat(P, p) A Sat(P, o) (9)

The computational "and" and "or," P A Q and P V Q, combine the e, t, and f actions
produced by Sat(P, F). P A Q runs P and Q synchronously until both have finished
producing e's; then P A Q produces the conjunction of the truth signals produced by P
and Q. P V Q behaves similarly.

The system has some technical properties to facilitate the proof that bisimulation is a
congruence. We call a process crudely Boolean if its synchronization tree consists of a
single (finite or infinite) trace, with all actions before the final step being e's, and the
final step labeled either e, t, or f. The proofs of congruence depend on having certain
processes be crudely Boolean. P A Q and P V Q are crudely Boolean whenever P and
Q are; and furthermore, both operators are associative, commutative, and idempotent
on crudely Boolean processes. Sat(P, F) is a crude Boolean process for all P and F, in
particular for those F which are not the translations of modal formulas.

It is also necessary that an F have a unique sequence of arguments to its coded main
connective. S follows the convention that the d-descendants of a process are its arguments.
However, the S operators in S will allow us to build processes which have too many or too
few d-descendants; for example,

and(F, F) + and(F2 , F3)

codes an ill-formed conjunction with four d-children. We will use global testing to make
sure the rules use all the d-descendants as arguments. (Choosing, say, the first two de-
scendants would lead to distinctions between bisimular processes, for bisimular processes
may list their descendants in different orders.) The simple rule for conjunctions (equation

15

9) gives the desired behavior on well-formed conjunctions; in general, we will treat all the
d-children of a conjunction as conjuncts.

F codes A, Children(Fd) = (F,,...,F,)
Sat(P, F) - /A~f1 Sat(P, Fi)

where & is an iterated A, and by convention L90Xi is the process tO. Similarly,
we treat all the d-children of a disjunction as disjuncts. A well-formed coded modality

((a)V)* or ([a]W) ° , has only one d-descendant. Again, to avoid distinguishing bisimular

processes representing ill-formed formulas, the rules cannot ignore extra d-descendants; we
use the disjunction of all the d-descendants (cf. rules (10), (11)), so that posaF + posF 2

is used in much the same way as pos8 (or(F, F2)). The choice of disjunction was arbitrary;
conjunction would have worked as well.

Note also that we are using an ordered global testing rules to make Sat(P,F) have only a
single child. We fix some order e.g., lexicographic order on the children of each process
when instantiating the antecedent of a global testing rule.

The full set of rules for this system isl

For each connective a of HML over S, index i such that the ih bit of code(a) is 1, operator
op corresponding to a, and vector X of length equal to the arity of op,

op(X) .'- 0

In addition,

and(P,Q) -d p _

and(P,Q) d QP
or(P, Q) + p

or(P,Q) .d Q
pos.(P) -d p P

nec(P) _d+ p

The rules for Sat(P, F) are given in Figure 8. Recall that the expression "P codes a" is

an abbreviation for a sequence of P 12 P and P . tests, and therefore is acceptable in
the antecedent of a GSOS rule. Also recall that we are treating multiple arguments of a
modality as their disjunction.

The computational Boolean operators are largely synchronous, to make them idempotent,
associative, and commutative on crudely Boolean processes.

16

F code.s t
Sat(P, F) .20

F codesi if

Sat(P, F) -4 0

FcodesA, Children(Fd)=(F,...,F.)_
Sat(P, F) -4A!', Sat(P, Fj)

F code. v, Children(Fd) =(F,,... ,F,.)

Sat(P, F) A4 V!S= 1 Sat(P, Fi)

F code.,(a), Childr(Fd) =(F 1 ,... ,F.), Children(Pa) =(P 1 ,... ,Pn) (0

Sat(P, F) -4 V~(~Sat(Pj,F))

F codes [a], C'hildren(Fd) =(F 1 ,... ,Fn), Chldren(Pa) =(P 1 ,... ,Pn) (1
Sat(P, F) c+AT (Vn jSat(Pj, 1j))

Figure 8: Global-testing rules capturing bisimulation.

17

P1p', Q-Q'
P V Q 4 P' V Q', PL Q 14 P'A Q'

P TQ PP' Q, p Q .. p Q

P , Q-Q'

PVQ -! PVQ', PA Q 4 PA Q

For a', b' E {t,f}, let c' be their conjunction and d' their disjunction. We have the rules
do Q, V

p &A-..? , p', Q d' 0.PAQ£O, PVQ-..O

The following properties of S show that it is indeed what we want:

" There is a unique arrow relation compatible with these rules.

" The synchronization tree of each S-process is computable relative to S, and finitely
branching if all S-processes are finitely branching.

* For any formula W of Hennessy-Milner logic over S and process P of 9, the process
Sat(P, W*) has a trace ending in tiff P H p. So, trace congruence refines bisimulation.

" Bisimulation is a congruence relation with respect to all S operators.

" Hence, bisimulation coincides with trace congruence for this system.

The difficult property to verify is that bisimulation is a congruence. A sufficient condition
to ensure that a system with global testing respects bisimulation is that the iterated oper-
ators in the consequents of global testing rules, in this case Ak and V, are commutative.
associative, and idempotent. In our case, commutativity follows routinely from symmetries
in the rules. In our system, A and V are also idempotent and associative on crudely
Boolean processes, which is all we need for the proof. Our rules were contrived to make
this fact easily verified.

18

a .s y~ - ,a WN, TyA,; Iwm -. - - . . - - .

1. Trace Equivalence

2. Trace Congruence (CSP)

3. Refusal Testing ([22])

4. GSOS Congruence (Definition [?])

5. Bisimulation (CCS)

Figure 9: Successively Finer Equivalences on Processes

7 Conclusions

Should bisimulation play a significant role in process theory? It has many nice properties,
a rich theory, and a tested methodology for verifying correctness of genuine, nontrivial
protocols. Nevertheless, we find unconvincing the arguments for taking bisimulation as
a primitive notion. We maintain that computational distinctions should be made only
because of observable differences "at the terminal". Global testing systems which reduce
bisimulation to such observations do not offer what we regard as a reasonable framework

for defining operations on processes. Of course, the most persuasive pragmatic argument
against bisimulation would be an independently interesting concurrent protocol verifiable
using a methodology based on GSOS trace congruence but not even correct from the
bisimulation view. Such an argument remains to be elaborated.

In any case, the development here clarifies the point of keeping to a GSOS discipline in
specifying process behavior. It also motivates further investigation of a new congruence,
namely GSOS trace congruence, which is finer than CSP or refusal testing congruence
but coarser than bisimulation (cf Figure 9). Particularly noteworthy is the problem of
axiomatizing the equational theory of finite trees with the operations + and a-prefixing
under GSOS congruence.5

References

[1] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical Computer
Sci., 00:0-0, 1986. Submitted.

'We will present our complete axiomatization of GSOS congruence in a later version of this paper.

19

[2] D. Austry and G. Boudol. Algtbre de processus et synchronisation. Theoretical

Computer Sci., 30:91-131, 1984.

[3] J. C. M. Baeten and R. J. van Glabbeek. Another look at abstraction in process

algebra. In T. Ottman, editor, 1 4th ICALP, pages 84-94, Volume 267 of Lect. Notes

in Computer Sci., Springer-Verlag, 1987.

[4] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60:109-137, 1984.

[5] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Sci., 37:77-121, 1985.

[6] S. D. Brookes. On the relationship of CCS and CSP. In 10 th ICALP, pages 83-96.

Springer-Verlag, 1983.

[71 S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. A CM, 31:560-569, 1984.

[8] L. Castellano, G. D. Michelis, and L. Pomello. Concurrency vs interleaving: an
instructive example. Bull. Europ. Ass. Theoretical Computer Sci., (31):12-15, 1987.

[91 R. de Simone. Higher-level syuchronisiug devices in MIE3E-SCCS. Theoretical Corn.
puter Sci., 37:245-267, 1985.

[10] R. DeNicola and M. C. Hennessy. Testing equivalences for processes. Theoretical
Computer Sci., 34:83-133, 1984.

[11] M. Fischer and R. Ladner. Propositional dynamic logic of regular programs. J.
Computer and System Sci., 18:194-211, 1979.

[12] S. Graf and J. Sifakis. From synchronisation tree logic to acceptance. In R. Parikh.
editor, Logics of Programs, pages 128-142, Volume 193 of Lect. Notes in Computer

Sci., Springer-Verlag, 1985.

[13] S. Graf and J. Sifakis. A modal characterization of observational congruence on finite
terms of CCS. Information and Control, 125-145, 1986.

[14] S. Graf and J. Sifakis. Readiness semantics for regular processes with silent actions.
In T. Ottman, editor, 14' h ICALP, pages 115-125, Volume 267 of Lect. Notes in

Computer Sci., Springer-Verlag, 1987.

[151 M. C. B. Hennessy and R. Milner. Algebraic laws for nonderminism and concurrency.
J. ACM, 32:137-161, 1985.

20

[161 C. Hoare. Communicating sequential processes. Comm. ACM, 21:666-677, 1978.

[17] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science,
Prentice-Hall, 1985. 256 pp.

[18] R. Milner. A Calculus of Communicating Systems. Volume 92 of Lect. Notes in
Computer Sci., Springer-Verlag, 1980. 171 pp.

[19] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Sci., 25:267-
310, 1983.

[201 R. Milner. Lectures on a calculus for communicating systems. In S. Brookes,
A. Roscoe, and G. Winskel, editors, Seminar on Concurrency, pages 197-220, Vol-
ume 197 of Lect. Notes in Computer Sci., Springer-Verlag, 1984.

[21] E. Olderog and C. A. R. Hoare. Specification-oriented semantics for communicating
processes. Act& Informatica, 23:9-66, 1986.

[22] I. Phillips. Refusal testing. In 1 3 th ICALP, pages 304-313, Volume 226 of Lect. Notes
in Computer Sci., Springer-Verlag, 1986.

[23] G. D. Plotkin. A structural approach to operational semantics. Technical Re-
port DAIMI FN-19, Aarhus Univ., Computer Science Dept., Denmark, 1981.

[24] A. Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. In W. Brauer, editor, Int'l Conf. Automata, Languages and Programming,
pages 15-32, Springer-Verlag, 1985.

[25] R. S. Streett. PDL of looping and converse is elementarily decidable. Information
and Control, 54:121-141, 1982.

Cambridge, Massachusetts, November 3, 1987

21

OFFICIAL DISTRIBUTION LIST

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

M

f/Lm&Jb

